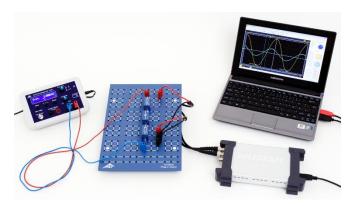
Electricidad

Circuitos de corriente continua y alterna



Resistencias de corriente alterna

DETERMINACIÓN DE LA RESISTENCIA DE CORRIENTE ALTERNA EN UN CIRCUITO CON RESISTENCIA CAPACITIVA Y RESISTENCIA ÓHMICA.

- Determinación de la amplitud y la fase de la resistencia total en dependencia con la frecuencia en una conexión en serie.
- Determinación de la amplitud y la fase de la resistencia total en dependencia con la frecuencia en una conexión en paralelo.

UE3050301 04/18 UD

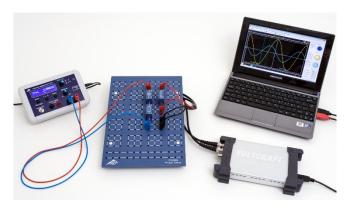


Fig. 1: Montaje de medición del circuito en serie (a la izquierda) y en paralelo (a la derecha).

FUNDAMENTOS GENERALES

A circuitos de corriente alterna que llevan conexiones con capacidades se les asignn resistencias complejas por cuestión de la sencillez de trabajo, porque aquí además de la corriente y la tensión también se considera la relación de fase entre las dos magnitudes. Conexiones en serie y en paralelo de resistencias capacitivas y óhmicas se pueden describir en forma muy sencilla. También la tensión y la corriente se observan como magnitudes complejas. Se puede medir cada vez la parte real.

Le resistencia capacitiva compleja de un condensador de capacidad C en un circuito de corriente alterna de frecuencia f es:

(1)
$$X_{\rm C} = -i \cdot X_{\rm CO} = -i \cdot \left(\frac{1}{\omega \cdot C}\right) = \frac{1}{i \cdot \omega \cdot C}$$

con $\omega = 2\pi \cdot f$

Por lo tanto, la conexión en serie del condensador con la resistencia *R* tiene una resistencia total se le puede asociar

$$(2) \quad Z_{\rm S} = \frac{1}{i \cdot \omega \cdot C} + R \,,$$

mientras que a la conexión en paralelo se le asocia

$$(3) \quad Z_{p} = \frac{1}{i \cdot \omega \cdot C + \frac{1}{R}}$$

La manera más usual de expresar es

(4)
$$Z = Z_0 \cdot \exp(i \cdot \varphi)$$

se obtiene de ello

(5)
$$Z_{S} = Z_{S0} \cdot \exp(i \cdot \varphi_{S})$$
$$= \frac{\sqrt{1 + (\omega \cdot C \cdot R)^{2}}}{\omega \cdot C} \cdot \exp(i \cdot \varphi_{S})$$
$$\cot \tan \varphi_{S} = -\frac{1}{\omega \cdot C \cdot R}$$

(6)
$$Z_{P} = Z_{P0} \cdot \exp(i \cdot \varphi_{P})$$
$$= \frac{R}{\sqrt{1 + (\omega \cdot C \cdot R)^{2}}} \cdot \exp(i \cdot \varphi_{P})$$

con $\tan \varphi_{P} = -\omega \cdot C \cdot R$.

Si se aplica la tensión

(7)
$$U = U_0 \cdot \exp(i \cdot 2 \cdot \pi \cdot f \cdot t)$$

a la resistencia total correspondiente $Z = Z_S$ y Z_P , entonces circula la corriente

(8)
$$I = \frac{U_0}{Z_0} \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$
$$= I_0 \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$

Esta corriente se determina en el experimento a partir de la caída de tensión $U_{\rm m}(t)$ en una resistencia de trabajo $R_{\rm m}$ (figuras 2 y 3), dimensionada de tal manera que $U_{\rm m0} << U_0$; es decir, que la tensión aplicada casi cae por completo en $Z_{\rm S}$ y $Z_{\rm P}$. La corriente así determinada circula tanto por $Z_{\rm S}$ como a través de $Z_{\rm P}$, dado que las dos resistencias están conectadas en serie a $R_{\rm m}$ (véase la imagen del circuito equivalente de las figuras 2 y 3). Debido a $U_{\rm m}(t) = I(t) \cdot R_{\rm m}$ la curva en el tiempo de $U_{\rm m}(t)$ refleja el paso en el tiempo de la corriente I(t).

LISTA DE APARATOS

1 Placa enchufable para componentes electrónicos 1012902 (U33250) 1012903 (U333011) 1 Resistencia 1 Ω, 2 W, P2W19 1 Resistencia 100 Ω, 2 W, P2W19 1012910 (U333018) 1 Condensador 10 µF, 35 V, P2W19 1012957 (U333065) 1 Condensador 1 μF , 100 V, P2W19 1012955 (U333063) 1 Condensador 0,1 µF, 100 V, P2W19 1012953 (U333061) 1 Generador de funciones FG 100

@230V ó

1 Generador de funciones FG 100 @115V 1009956 U8533600-115)

1009957 (U8533600-230)

1 Osciloscopio de 2x25 MHz

para PC 1020857 (U11830) 2 Cable HF, conector macho

BNC / 4 mm 1002748 (U11257)

1 Juego de 15 cables de experimentación, 1 mm² 1002840 (U13800)

MONTAJE Y REALIZACIÓN

Circuito en serie

- Ensamble el montaje de medición del circuito en serie (Fig. 1, a la izquierda) según se indica en el esquema (Fig. 2) con R_m = 1 Ω, R = 100 Ω y C = 10 μF.
- Conecte la señal de salida U_m(t) = I(t) · R_m al canal CH1 y la de entrada U(t) al canal CH2 del osciloscopio.

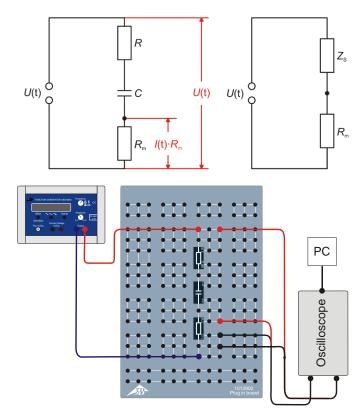


Fig. 2: Diagrama de circuito (arriba a la izquierda), circuito equivalente (arriba a la derecha) y esquema del montaje (abajo) del circuito en serie.

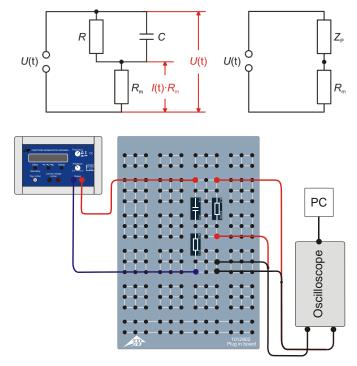


Fig. 3: Diagrama de circuito (arriba a la izquierda), circuito equivalente (arriba a la derecha) y esquema del montaje (abajo) del circuito en paralelo.

Ajuste los siguientes parámetros en el osciloscopio del

Horizontal:

Base de tiempo: 50 μs/div Posición horizontal de disparo: 0,0 ns

Vertical: CH1:

División de la escala de tensión: 20 mV/div CC Posición del punto cero:

0,0 divs

División de la escala de tensión: 2 V/div CC Posición del punto cero: 0,0 divs

Disparo:

Simple (no alterno)

CH2 Fuente: Modo: Flanco Flanco: Ascendente Umbral: 0.000 mV Modo de disparo: Automático

Nota

Los parámetros de tiempo por división y de voltios también por división se deben adaptar en el transcurso de la serie de mediciones.

Seleccione la forma de señal senoidal en el generador de funciones y ajuste la amplitud de la señal de entrada en $U_0 = 6 \text{ V}$. Para ello ajuste el regulador de amplitud de manera que un máximo o un mínimo de la señal del canal CH2 del osciloscopio (con 2 V / división) corresponda a 3 casillas.

- Ajuste en el generador de funciones una tras otra las frecuencias de 2000 Hz, 1000 Hz, 500 Hz, 200 Hz, 100 Hz y 50 Hz. Calcule según la fórmula T = 1/f las correspondientes duraciones de periodo y anótelas junto con las frecuencias en la tabla 1.
- Lea la amplitud U_{m0} de la señal de salida $U_{m}(t)$ en el osciloscopio y anote el valor en la tabla 1
- Lea la diferencia de tiempo Δt de los pasos por cero de las señales U(t) y $U_m(t)$ en el osciloscopio y anote los valores en la tabla 1.
- Repita la medición con el condensador $C = 1 \mu F$ frente a las mismas frecuencias y para el condensador con $C = 0.1 \mu F$ ante 2000 Hz y 1000 Hz y anote todos los valores en la tabla 1.

Circuito en paralelo

- Ensamble el montaje de medición del circuito en paralelo (Fig. 1, a la derecha) según el esquema (Fig. 3) con $R_{\rm m}$ =1 Ω , R =100 Ω y C = 10 μ F.
- Lleve a cabo las mediciones de manera análoga a las realizadas con el circuito en serie. Seleccione los mismos parámetros iniciales en el osciloscopio del PC, solo ajuste 200 mV CC en Volts/DIV del CH1.
- Anote todos los valores de medición en la tabla 2.

EJEMPLO DE MEDICIÓN Y EVALUACIÓN

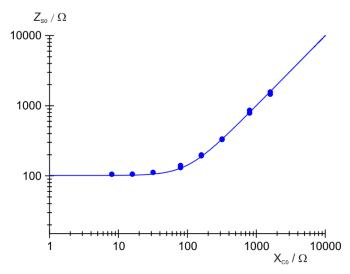
Tab. 1: Variables dadas, medidas y calculadas con el circuito en serie, $U_0 = 6 \text{ V}$, $R_m = 1 \Omega$.

C/µF	f/Hz	T/ms	X _{C0} / Ω	U _{m0} / mV	Δt / ms	<i>I</i> ₀ / mA	Z _{S0} / Ω	φs
10,0	2000	0,5	8,0	56,9	0,006	56,9	105,4	4,3°
10,0	1000	1,0	15,9	56,7	0,026	56,7	105,8	9,4°
10,0	500	2,0	31,8	53,5	0,095	53,5	112,1	17,1°
10,0	200	5,0	79,6	42,8	0,500	42,8	140,2	36,0°
10,0	100	10,0	159,2	30,2	1,479	30,2	198,7	53,2°
10,0	50	20,0	318,3	17,9	3,689	17,9	335,2	66,4°
1,0	2000	0,5	79,6	45,8	0,055	45,8	131,0	39,6°
1,0	1000	1,0	159,2	31,1	0,157	31,1	192,9	56,5°
1,0	500	2,0	318,3	18,2	0,400	18,2	329,7	72,0°
1,0	200	5,0	795,8	7,0	1,153	7,0	857,1	83,0°
1,0	100	10,0	1591,5	4,1	2,517	4,1	1463,4	90,6°
0,1	2000	0,5	795,8	7,6	0,114	7,6	789,5	82,1°
0,1	1000	1,0	1591,5	3,8	0,229	3,8	1578,9	82,4°

C/µF	f/Hz	T/ms	X _{C0} / Ω	$U_{\rm m0}$ / mV	Δt / ms	<i>I</i> ₀ / mA	$Z_{ m P0}$ / Ω	ФР
10,0	2000	0,5	8,0	679,7	0,078	679,7	8,8	56,2
10,0	1000	1,0	15,9	360,9	0,194	360,9	16,6	69,8
10,0	500	2,0	31,8	190,9	0,359	190,9	31,4	64,6
10,0	200	5,0	79,6	96,4	0,507	96,4	62,2	36,5
10,0	100	10,0	159,2	71,1	0,826	71,1	84,4	29,7
10,0	50	20,0	318,3	62,5	0,893	62,5	96,0	16,1
1,0	2000	0,5	79,6	93,1	0,069	93,1	64,4	49,7
1,0	1000	1,0	159,2	70,2	0,081	70,2	85,5	29,2
1,0	500	2,0	318,3	61,5	0,086	61,5	97,6	15,5
1,0	200	5,0	795,8	59,2	0,073	59,2	101,4	5,3
1,0	100	10,0	1591,5	58,6	0,069	58,6	102,4	2,5
0,1	2000	0,5	795,8	60,1	0,010	60,1	99,8	7,2
0.1	1000	1.0	1591.5	58.2	0.010	58.2	103.1	3.6

Tab. 2: Variables dadas, medidas y calculadas con el circuito en paralelo, U_0 = 6 V, R_m =1 Ω .

- Calcule el valor de la resistencia capacitiva según X_{C0} = 1 / (2 · π · f · C) (véase la ecuación 1) y anote los valores en las tablas 1 y 2.
- A partir de los valores de U_{m0} (tablas 1 y 2) y R_m (1 Ω), calcule las amplitudes de la corriente según I₀ = U_{m0} / R_m y anote los resultados en las tablas 1 y 2.
- Calcule los valores de Z_{S0} y. Z_{P0} de la resistencia total según Z₀ = U₀ / I₀ (U₀ = 6 V) y anote los resultados en la tabla 3.
- Calcule el desfase a partir de los valores de los periodos
 Τ y las diferencias de tiempo Δt (tablas 1 y 2) según
 φ = 360°· Δt / Ty anote los resultados en las tablas 1 y 2.
- Trace gráficamente los valores Z_{S0} y. Z_{P0} de la resistencia total y de los desfases de φs y φ_P de los circuitos en serie y en paralelo en función de X_{C0} (Fig. 4 – 7).
- Calcule teóricamente los valores de Z_{S0} y. Z_{P0} de la resistencia total y de los desfases φs y φ_P, según la ecuación (5) para el circuito en serie y la igualdad (6) para el circuito en paralelo

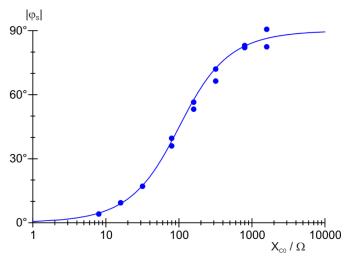

(9)
$$Z_{S0} = \sqrt{R^2 + X_{C0}^2}$$
, $\phi_S = \arctan\left(-\frac{X_{C0}}{R}\right)$

(10)
$$Z_{P0} = \frac{1}{\sqrt{\frac{1}{R^2} + \frac{1}{X_{C0}^2}}}, \ \phi_P = \arctan\left(-\frac{R}{X_{C0}}\right),$$

y trace el resultado en forma de líneas continuas en las figuras 4 al 7.

Resumen

Con bajas frecuencias, el circuito en serie asume el valor de la resistencia capacitiva y el circuito en paralelo el valor de la resistencia óhmica. El desfase está entre 0 ° y -90 ° y es igual a -45 ° si la resistencia óhmica y la capacitiva presentan el mismo valor.


 Z_{p_0} / Ω 1000

1000

1000 X_{co} / Ω

Fig. 4: Resistencia total del circuito en serie.

Fig. 6: Resistencia total del circuito en paralelo.

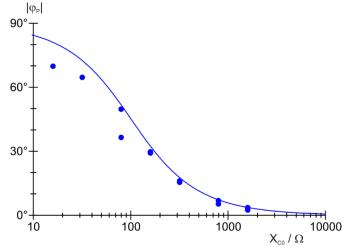


Fig. 5: Desfase del circuito en serie.

Fig. 7: Desfase del circuito en paralelo.